Skip to main content

Converting Decimal Number system to Binary, Octal and Hexa Decimal with Examples and Vice Versa


Topics covered with examples: Converting Decimal Number system to Binary, Octal and Hexa Decimal with Examples and Vice Versa



Number Systems in Computer Science and Conversion Method
Conversion of Decimal number system to other  number systems
Conversion of Decimal number system to binary number systems
Conversion of Decimal number system to octal number systems
Conversion of Decimal number system to hexadecimal number systems
Conversion of  non-decimal Number system to Other non-decimal number system

Conversion of other number systems to Decimal number system
Conversion of binary number systems to Decimal number system
Conversion of octal number systems to Decimal number system
Conversion of  hexadecimal number systems to Decimal number system

Q1. What is a Number System? What are different types of number system?

Number system
A number system is a set of digits, symbols and rules to express quantities in counting and calculations. Following are the most commonly used number systems:



Converting Decimal Number system to binary, octal and hex decimal with examples and vice versa
Number-systems-in-computer-science-easy-conversion-methods-with-pictures

Decimal Number System

It is most commonly used number system. It has 10 symbols{0,1,2,3,4,5,6,7,8,9}. It is also called base 10 number system. People normally use decimal number system to represent numbers.


Binary Number System

In binary number system there are only two symbols {0 and 1}. In a computer all data is represented by Binary number system. This is because computer’s electronic switches have only two states on and OFF. When a switch is ON it represents a 1 and when a switch is OFF, it represents a Zero.

Octal Number System

Octal number system consists of 8 digits{0,1,2,3,4,5,6,7}. Its base is 8. It is used as shorthand for long binary numbers. Each octal digit represents 3 binary digits.

Octal
Binary
0
000
1
001
2
010
3
011
4
100
5
101
6
110
7
111


Hexadecimal Number System

Hexadecimal number system is used to represent long binary numbers in an easy and short form. Its base is 16. It has sixteen symbols{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}. Each hexadecimal digit represents 4 binary digits.
Hexadecimal
Binary
Hexadecimal
Binary
0
0000
8
1000
1
0001
9
1001
2
0010
A
1010
3
0011
B
1011
4
0100
C
1100
5
0101
D
1101
6
0110
E
1110
7
0111
F
1111



Q2. Conversion of Decimal (Integer part) to other systems

                                  
a) 4510 = (?)2   
b) 11910 =(?)8
c) 19010 =(?)16
2
45
2
22-1
2
11-0
2
5  -1
2
2  -1
2
1  -0

0  -1 
8
119
8
14-7
8
1  -6

0  -1
16
190
16
11-14(E)

0  -11(B)
   
           

=> 4510 = (101101)2                          11910=(167)8                       19010=(BE)16                       


Q3. Conversion of Decimal system (Fraction part) to other systems

a) (.23)10   = (?)2
b) (.225)10 = (?)8
c) (.225)10 = (?)16


Fraction
Integer
.23 X 2 = 0.46
.46
0
.46 X 2 = 0.92
.92
0
.92 X 2 = 1.84
.84
1
.84 X 2 = 1.68
.68
1
.68 X 2 = 1.36
.36
1

=> (.23)10   = (.00111)2        [Similar method is used for decimal (fraction) to Octal (multiply by 8)and hexadecimal(multiply by 16)]

Q4. Conversion of Other systems (Integer part) to Decimal


a)  (101101)2    =( ? )10     b)    (167)8  = (?)10                 (BE)16 =(?)10                      
   
  a) (101101)2                                                   
     =1x25+0x24+1x23+1x22+0x21+1x20 
    = 32   + 0   +   8   +  4   + 0     +1
    = 45 
b) (167)8          
     =1x82+6x81+7x80 
    = 64   + 48   +  7
    = 119 
c) (BE)2            
     =Bx161+Ex160 
    =  11x161+14x160 
    =  176   + 14
    =   190 


Q5. Conversion of Other systems(Fraction part) to Decimal number system

a)  (.110)2    =( ? )10     b)    (.75)8  = (?)10                 (.13)16 =(?)10                       
   
  a) (.110)2                                                        
     =.{1x2-1+1x2-2+0x2-3} 
     =.{ 1/2   + 1/4   +   0}
     =.{  .5    +  .25  +    0}
     =.75
b) (.75)8            
     =.{7x8-1+5x8-2  }
     =.{ 7/8   + 5/64 }
     = .{.875 + .0781}
     = .9531 
c) (.13)16           
     =.{1x16-1+3x16-2  }
     =.{1/16   +3/256} 
    =  .{.0625   + .01171}
    =   .0742 



      Conversion of  non-decimal Number system to Other non-decimal number system


      For example to convert OCTAL into HEXADECIMAL, use the follwing steps:

1)            Convert octal into decimal

2)            Convert decimal into hexadecimal

Topics covered with examples: Number Systems in Computer Science and Conversion Method

Conversion of Decimal number system to other  number systems

Conversion of Decimal number system to binary number systems
Conversion of Decimal number system to octal number systems
Conversion of Decimal number system to hexadecimal number systems
Conversion of  non-decimal Number system to Other non-decimal number system

Conversion of other number systems to Decimal number system
Conversion of binary number systems to Decimal number system
Conversion of octal number systems to Decimal number system
Conversion of  hexadecimal number systems to Decimal number system



Comments

Popular posts from this blog

Explain Advantages Of Networks

Define Network with examples. Give importance of Computer Network. COMPUTER NETWORK We can define a Computer Network as a set of two or more connected computers to share information and other resources (data, files, printers, hard disk, modem, CD-Rom Drive, CD-Writer, DVD-Rom Drive, DVD-Writer etc.). The computers in a network can share: Data, Information, Files Software Hardware (printers, disk, modems)etc. Advantages of Computer Networks EXAMPLES OF COMPUTER NETWORK Computer network can be used in an office. Different people in the office can share common information and printer. Net Cafes use Computer Network for internet sharing. Net Cafe Owners can save money by sharing one DSL Routers / Modem and a single Internet Connection. Computer Network is used in Computer Laboratories of Schools, Colleges and other educational institutes. Internet, is also an example of a computer network. Internet is a network of millions of computers connected through phone lin...

Types Of Headings In HTML

HTML Hedings Headings in HTML are used to display Titles, Sub-Titles of Sub-Sub-Titles for your web page text. There are six types of headings in HTML. H1 is the largest heading and H6 is the smallest heading. <H1> is opening tag whereas </H1> is the closing tag for the largest heading. The text between <h1> and </h1> will be displayed as the main Title in your web page. Following are the six tags used for six types of headings in HTML. <H1> ... </H1> <H2> ... </H2> <H3> ... </H3> <H4> ... </H4> <H5> ... </H5> <H6> ... </H6> The H1 heading is used for main titles. Actually H1 heading will show the text in largest font size. H2 headings is used for Sub-Titles. H2 displays text in smaller font size than H1, H3 displays text of font size smaller than H1 and H2, and so on. H1 is for largest heading in a text page and H6 is for smallest heading.   Importance Of Headings in SEO H...

Explain different types of storage devices

Topic: Explain different types of storage devices in Computer systems Storage Devices Storage devices are used to store data and instructions permanently. Storage devices are also called secondary storage devices / backing storage devices / external storage devices or auxiliary storage devices. Examples of storage devices include Hard Disk, CD and DVD etc. Why Secondary Storage Devices are Used? Secondary storage devices are used because: Primary memory(RAM) is volatile and temporary. When computer is switched off, all data in ram is erased. Storage devices can store large amounts of data and instructions permanently whereas Primary memory has less capacity of storing data. Types Of Storage Devices There are three main types of storage devices:  Magnetic Tape   Magnetic Disk   Optical Disk   Flash Memory storage devices 1. Magnetic Tape Magnetic tape is the oldest storage device. It is made of plastic coated with m...