Skip to main content

Converting Decimal Number system to Binary, Octal and Hexa Decimal with Examples and Vice Versa


Topics covered with examples: Converting Decimal Number system to Binary, Octal and Hexa Decimal with Examples and Vice Versa



Number Systems in Computer Science and Conversion Method
Conversion of Decimal number system to other  number systems
Conversion of Decimal number system to binary number systems
Conversion of Decimal number system to octal number systems
Conversion of Decimal number system to hexadecimal number systems
Conversion of  non-decimal Number system to Other non-decimal number system

Conversion of other number systems to Decimal number system
Conversion of binary number systems to Decimal number system
Conversion of octal number systems to Decimal number system
Conversion of  hexadecimal number systems to Decimal number system

Q1. What is a Number System? What are different types of number system?

Number system
A number system is a set of digits, symbols and rules to express quantities in counting and calculations. Following are the most commonly used number systems:



Converting Decimal Number system to binary, octal and hex decimal with examples and vice versa
Number-systems-in-computer-science-easy-conversion-methods-with-pictures

Decimal Number System

It is most commonly used number system. It has 10 symbols{0,1,2,3,4,5,6,7,8,9}. It is also called base 10 number system. People normally use decimal number system to represent numbers.


Binary Number System

In binary number system there are only two symbols {0 and 1}. In a computer all data is represented by Binary number system. This is because computer’s electronic switches have only two states on and OFF. When a switch is ON it represents a 1 and when a switch is OFF, it represents a Zero.

Octal Number System

Octal number system consists of 8 digits{0,1,2,3,4,5,6,7}. Its base is 8. It is used as shorthand for long binary numbers. Each octal digit represents 3 binary digits.

Octal
Binary
0
000
1
001
2
010
3
011
4
100
5
101
6
110
7
111


Hexadecimal Number System

Hexadecimal number system is used to represent long binary numbers in an easy and short form. Its base is 16. It has sixteen symbols{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}. Each hexadecimal digit represents 4 binary digits.
Hexadecimal
Binary
Hexadecimal
Binary
0
0000
8
1000
1
0001
9
1001
2
0010
A
1010
3
0011
B
1011
4
0100
C
1100
5
0101
D
1101
6
0110
E
1110
7
0111
F
1111



Q2. Conversion of Decimal (Integer part) to other systems

                                  
a) 4510 = (?)2   
b) 11910 =(?)8
c) 19010 =(?)16
2
45
2
22-1
2
11-0
2
5  -1
2
2  -1
2
1  -0

0  -1 
8
119
8
14-7
8
1  -6

0  -1
16
190
16
11-14(E)

0  -11(B)
   
           

=> 4510 = (101101)2                          11910=(167)8                       19010=(BE)16                       


Q3. Conversion of Decimal system (Fraction part) to other systems

a) (.23)10   = (?)2
b) (.225)10 = (?)8
c) (.225)10 = (?)16


Fraction
Integer
.23 X 2 = 0.46
.46
0
.46 X 2 = 0.92
.92
0
.92 X 2 = 1.84
.84
1
.84 X 2 = 1.68
.68
1
.68 X 2 = 1.36
.36
1

=> (.23)10   = (.00111)2        [Similar method is used for decimal (fraction) to Octal (multiply by 8)and hexadecimal(multiply by 16)]

Q4. Conversion of Other systems (Integer part) to Decimal


a)  (101101)2    =( ? )10     b)    (167)8  = (?)10                 (BE)16 =(?)10                      
   
  a) (101101)2                                                   
     =1x25+0x24+1x23+1x22+0x21+1x20 
    = 32   + 0   +   8   +  4   + 0     +1
    = 45 
b) (167)8          
     =1x82+6x81+7x80 
    = 64   + 48   +  7
    = 119 
c) (BE)2            
     =Bx161+Ex160 
    =  11x161+14x160 
    =  176   + 14
    =   190 


Q5. Conversion of Other systems(Fraction part) to Decimal number system

a)  (.110)2    =( ? )10     b)    (.75)8  = (?)10                 (.13)16 =(?)10                       
   
  a) (.110)2                                                        
     =.{1x2-1+1x2-2+0x2-3} 
     =.{ 1/2   + 1/4   +   0}
     =.{  .5    +  .25  +    0}
     =.75
b) (.75)8            
     =.{7x8-1+5x8-2  }
     =.{ 7/8   + 5/64 }
     = .{.875 + .0781}
     = .9531 
c) (.13)16           
     =.{1x16-1+3x16-2  }
     =.{1/16   +3/256} 
    =  .{.0625   + .01171}
    =   .0742 



      Conversion of  non-decimal Number system to Other non-decimal number system


      For example to convert OCTAL into HEXADECIMAL, use the follwing steps:

1)            Convert octal into decimal

2)            Convert decimal into hexadecimal

Topics covered with examples: Number Systems in Computer Science and Conversion Method

Conversion of Decimal number system to other  number systems

Conversion of Decimal number system to binary number systems
Conversion of Decimal number system to octal number systems
Conversion of Decimal number system to hexadecimal number systems
Conversion of  non-decimal Number system to Other non-decimal number system

Conversion of other number systems to Decimal number system
Conversion of binary number systems to Decimal number system
Conversion of octal number systems to Decimal number system
Conversion of  hexadecimal number systems to Decimal number system



Comments

Popular posts from this blog

Explain different types of storage devices

Topic: Explain different types of storage devices in Computer systems Storage Devices Storage devices are used to store data and instructions permanently. Storage devices are also called secondary storage devices / backing storage devices / external storage devices or auxiliary storage devices. Examples of storage devices include Hard Disk, CD and DVD etc. Why Secondary Storage Devices are Used? Secondary storage devices are used because: Primary memory(RAM) is volatile and temporary. When computer is switched off, all data in ram is erased. Storage devices can store large amounts of data and instructions permanently whereas Primary memory has less capacity of storing data. Types Of Storage Devices There are three main types of storage devices:  Magnetic Tape   Magnetic Disk   Optical Disk   Flash Memory storage devices 1. Magnetic Tape Magnetic tape is the oldest storage device. It is made of plastic coated with m...

Explain Different Types Of Output Devices

Output devices Out put devices are used to display results of processing to the user. They perform the following functions:  Receive results from memory  Convert data into human readable form  Display results to the user Examples include: Monitor, printer, plotter, speaker, and multimedia projector. Different Types of Output Devices 1.    Monitor LCD Monitor CTR Monitor     Monitor is the most commonly used output device used to display results of processing. It has a TV like shape. Pictures on monitor are formed with picture elements called PIXEL. Monitors may be Monochrome that will display results in Black & White. Color Monitors are also available. They display results in multi colors. Monitor produces soft copy output. 2.    Printers Printers are used to produce hard copy out put. They print processing results on paper. Printers are divided into two main categories: · ...

What are Different Types of Input Devices With Examples

Topic: Different types of input devices of a computer system with examples, pictures and explanation:  Topics Covered are: Definition of Input Devices Functions of Input Devices ( How input devices work? ) Examples of Input Devices Pictures / Images of different input devices Different Examples of Input Devices With Description Keybboard Mouse Trach Ball Trackpad Joy Stick Light Pen Microphone Scanner Graphic Tablet ( Digitizer ) Digital Camera Touch Screen ( I/O Device / Dual Device - Perform Both Functions input + Output ) INPUT DEVICES ( Definition ) Input devices are used to enter data and instructions into computer memory from external world. Input Device is a hardware part of the computer that is used to enter data and instructions into computer memory. The examples of input devices include: Keyboard, Mouse , Track ball, Track Pad, Joy stick, Touch Screen, Light pen,   Scanner , Digital Camera, Microphone, Graphics tablet e...